Rubin's conjecture on local units in the anticyclotomic tower at inert primes

نویسندگان

چکیده

We prove a fundamental conjecture of Rubin on the structure local units in anticyclotomic $\mathbb{Z}_p$-extension unramified quadratic extension $\mathbb{Q}_p$ for $p\geq 5$ prime. Rubin's underlies Iwasawa theory deformation CM elliptic curve over field at primes $p$ good supersingular reduction, notably main terms $p$-adic $L$-function. As consequence, we an inequality Birch and Swinnerton-Dyer is also essential tool our exploration arithmetic $L$-function, which includes Bertolini--Darmon--Prasanna type formula.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The anticyclotomic Main Conjecture for elliptic curves at supersingular primes

The Main Conjecture of Iwasawa theory for an elliptic curve E over Q and the anticyclotomic Zp-extension of an imaginary quadratic field K was studied in [BD2], in the case where p is a prime of ordinary reduction for E. Analogous results are formulated, and proved, in the case where p is a prime of supersingular reduction. The foundational study of supersingular main conjectures carried out by...

متن کامل

Tate–Shafarevich groups in anticyclotomic p-extensions at supersingular primes

Let E/Q be an elliptic curve and p a prime of supersingular reduction for E. Denote by K∞ the anticyclotomic Zp-extension of an imaginary quadratic field K which satisfies the Heegner hypothesis. Assuming that p splits in K/Q, we prove that X(K∞, E)p∞ has trivial Λ-corank and, in the process, also show that HSel(K∞, Ep∞) and E(K∞)⊗Qp/Zp both have Λ-corank two.

متن کامل

On Russo's Conjecture about Primes

Let n, k be positive integres with k>2, and let b be a posItIve number with b> I. In this paper we prove that if n>C(k) , where C(k) IS an effectively computable constant depending on k, then we have C (n,k) <21lt .

متن کامل

ON THE TIllRD SMARANDACHE CONJECTURE ABOUT PRIMES

In this paper we basically verify the third Smarandache conjecture on prime.

متن کامل

Teitelbaum’s exceptional zero conjecture in the anticyclotomic setting

In [Tei], Teitelbaum formulates a conjecture relating first derivatives of the Mazur– Swinnerton-Dyer p-adic L-functions attached to a modular forms of even weight k ≥ 2 to certain L-invariants arising from Shimura curve parametrisations. This article formulates an analogue of Teitelbaum’s conjecture in which the cyclotomic Zp extension of Q is replaced by the anticyclotomic Zp-extension of an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Mathematics

سال: 2021

ISSN: ['1939-8980', '0003-486X']

DOI: https://doi.org/10.4007/annals.2021.194.3.8